Ампула минеральная двухкамерная АМК ДК для анкерного крепления: безопасность, эффективность, долговечность

ЗАЯТДИНОВ Дамир Фанисович

Заместитель директора по перспективному развитию ООО «РАНК 2»

ПОЗОЛОТИН Александр Сергеевич

Директор по перспективному развитию ООО «РАНК 2», канд. техн. наук

ГРЕЧИШКИН Павел Владимирович

Научный сотрудник Института угля СО РАН, канд. техн. наук

ЛЫСЕНКО Максим Владимирович

Заместитель директора по перспективному развитию ООО «РАНК 2»

АБРАМЕНКО Станислав Владимирович

Инженер-технолог ООО «АМК»

На основе подобранного состава минерального компонента и отвердителя, проведенных расчетов их соотношения, лабораторных и шахтных испытаний разработана двухкамерная минеральная ампула, позволяющая эффективно и быстро закреплять анкерную крепь в кровле и боках выработок, обеспечивая безопасность ведения горных работ в различных горно-геологических условиях.

Ключевые слова: сталеминеральная анкерная крепь, минеральная композиция, стальные и комбинированные анкеры, канатные анкеры, двухкамерная ампула, жидкий отвердитель.

Контактная информация: e-mail: grechishkin@mail. ru

ВВЕДЕНИЕ

В декабре 2013 г. вышел приказ об утверждении Федеральных норм и правил в области промышленной безопасности «Инструкция по расчету и применению анкерной крепи на угольных шахтах» [1], согласно которой сталеминеральную анкерную крепь необходимо применять в горных выработках:

- со сроком службы более 10 лет;
- проведенных по пластам, весьма склонным к самовозгоранию;
 - с обводненными породами.

Специалистами группы компаний «РАНК» более 7 лет назад, была разработана ампула минеральная композиционная (АМК) для закрепления анкеров в горных выработках, которая широко применяется на угольных шахтах и рудниках России (ООО «Шахта Байкаимская», закреплено более 20 км выработок; шахта «Хакасская»; шахта «Владимирская»; рудники «Холбинский», «Ирокинда», «Хужир» и др.). Данная ампула эффективно применяется и в настоящее время, но для увеличения скорости монтажа сталеминеральной анкерной крепи была разработана ампула минеральная композиционная двухкамерная (АМК ДК). При использовании ампул АМК ДК исключается время, затрачиваемое на замачивание ампул в воде перед установкой в шпур, что позволяет значительно снизить трудоемкость проходческих работ и сократить время на крепление выработок, также разработчиками ампулы был уменьшен срок гидратации минеральной композиции (до 30 мин.) по сравнению с аналогом (до 24 ч). Состоит ампула из внешней оболочки 1 с минеральной композицией 4 и оболочки внутренней камеры 3, заполненной жидким отвердителем 5 (рис. 1).

Оболочка внутренней камеры 3 разделена на герметичные секции термошвом, что позволяет при установке анкера качественно и равномерно смачивать минеральную композицию, для полного отверждения закрепляющего состава [2, 3]. Благодаря тому, что смесь равномерно перемешивается с отвердителем в процессе установки, гидратация минеральной композиции протекает по всему объему смеси и увеличивает прочность закрепления анкера в короткие сроки. В последующее время прочность закрепления анкера растет за счет набора прочности закрепляющего материала в течение 28 сут. [4, 5, 6].

Технология установки анкера на АМК ДК:

- бурится шпур диаметром 27-30 мм;
- к дну шпура до упора досылается необходимое количество ампул;
- к анкеру с помощью переходника-вращателя присоединяется анкероустановщик;
- с помощью станка, путем равномерного вращения и подачи, анкер устанавливается в проектное положение в течение 8-10 с;
- удержание анкера в проектном положении станком 15 c;
 - анкер установлен.

Важным достоинством АМК ДК является то, что в случае самовозгорания угля или пожара в шахте закрепляющая втулка сохраняет несущую способность анкерной крепи за счет негорючести минерального состава, что делает ее незаменимой в условиях угольных пластов, склонных и весьма склонных к самовозгоранию. Термостойкость состава разработанной смеси, без снижения прочности составляет не менее 600 °C, что в четыре раза больше по

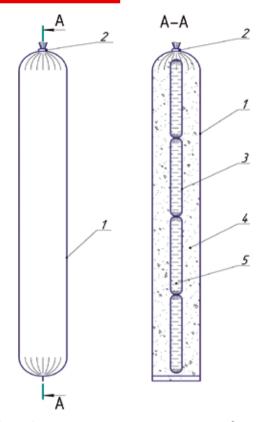


Рис. 1. Ампула минеральная композиционная двухкамерная (АМК ДК): 1 — внешняя оболочка; 2 — клипса; 3 — оболочка внутренней камеры; 4 — минеральная композиция; 5 — внутренние секции с жидким отвердителем

сравнению с полимерными ампулами, где точка плавления — 165 °C, а точка воспламенения — 300°С [7]. Реологические свойства минерального состава ампулы АМК ДК со временем не меняются по сравнению с полимерными составами, где прочность закрепляющей втулки в шахтных условиях начинает снижается уже на второй год эксплуатации за счет просадки [7].

Установка анкеров на химические ампулы сопровождается выделением токсичных веществ (паров стирола) в горные выработки, что полностью исключается при использовании ампул АМК ДК. Данный фактор особо актуален в условиях слабо проветриваемых и тупиковых горных выработок. Основные технические преимущества ампулы АМК ДК по сравнению с полимерными ампулами приведены в *табл. 1*.

Ампулы АМК ДК эффективно применяются как для закрепления стальных анкеров (типа АКМ АВ, А20В и др.), так комбинированных (типа АКМ20.01) и канатных (типа АКО1, АКО2, АКО1-25). Также с помощью АМК ДК выполняется бесфундаментный монтаж ленточных конвейеров на анкеры, в выработках с обводненными или слабыми вмещающими породами почвы [8].

Специалистами ООО «РАНК 2» проведены комплексные лабораторные и шахтные испытания прочности закрепления стальных, комбинированных и канатных анкеров ампулами АМК ДК. Некоторые результаты лабораторных испытаний показаны на (рис. 2, 3, 4) и в табл. 2. Результаты шахтных испытаний показаны в табл. 3.

Кроме того, ампулы АМК ДК были испытаны в условиях обводненности пород кровли и обильного водопритока

Таблица 1

Технические преимущества ампулы АМК ДК

Показатели	Минеральная ампула АМК ДК	Полимерная ампула
Выделение токсичных испарений	_	+
Надежность закрепления анкеров	+	+
Закрепляющий материал не горит и не поддерживает горения	+	_
Обеспечение расчетной несущей способности анкера	+	+
через 30 мин после закрепления		
Работоспособность анкерной крепи в горных выработках	+	Необходимо проводить
с длительным сроком службы (пять лет и более)		периодические испытания
		на прочность закрепления
Операция перемешивания состава ампул в шпуре	Отсутствует	Обязательна
Срок хранения ампул	12 мес	До 6 мес
Температура хранения ампул	От −50 °C до +50 °C	не выше +20 °C;

Таблица 2 Результаты лабораторных испытаний закрепления различных типов анкеров на ампулы АМК ДК

Основные технологические	Типы анкеров		
показатели	AKM 20.01-01	A20B	AK 01
Количество ампул АМК ДК, L-450 мм	2	2	3
Предварительное натяжение анкеров на гидравлическом прессе ИП 500, сразу после установки анкеров, кН	30	30	30
Время после установки до испытания на прочность закрепления, мин	30	30	30
Максимальная нагрузка на анкер, кН	153	175	230
Примечания	В результате испытаний анкер воспринял нагрузку до 105 кH, после чего стержень анкера начал удлиняться без потери несущей способности, при нагрузке 153 кH произошел обрыв стержня анкера	В результате испытаний анкер выдержал нагрузку до 175 кH, после чего произошел обрыв стержня анкера	В результате испытаний, анкер выдержал нагрузку до 230 кH, после чего произошел обрыв жилы каната

Таблица 3

Результаты шахтных испытаний закрепления различных типов анкеров на ампулы АМК ДК в условиях шахты ООО «Шахта Байкаимская» и ОАО «СУЭК-Кузбасс» ПЕ шахта «Комсомолец»

Основные технологические	Типы анкеров		
показатели	AKM 20.01-01	A20B (AKM AB)	
Количество ампул АМК ДК, L-450 мм, шт.	2	2	
Приложенная нагрузка на анкер после	100	140	
установки, кН			
Смещения стержня анкера в шпуре, мм	нет	нет	
Время после установки до испытания	30	30	
на прочность закрепления, мин			
Примечания	Суммарное время закрепления анкера на минеральные ампулы составило 27 с,		
	по сравнению с полимерными 50 с.		
Выводы	Фактическая несущая способность под-	Фактическая несущая способность под-	
	твердила прочность закрепления анкера	твердила прочность закрепления анкера	

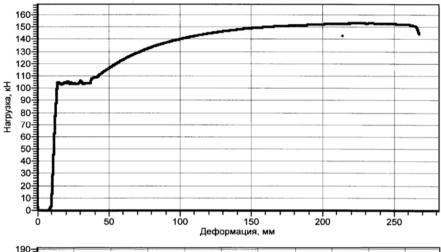


Рис. 2. Диаграмма нагружения анкера АКМ 20.01-01, закрепленного на ампулы АМК ДК через 30 мин. с момента установки

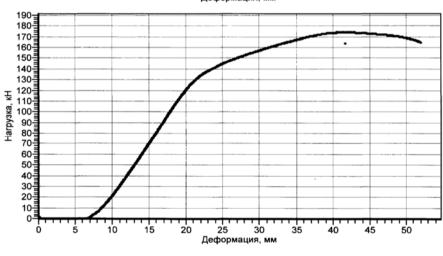


Рис. 3. Диаграмма нагружения анкера А20В (АКМ АВ), закрепленного на ампулы АМК ДК через 30 мин. с момента установки

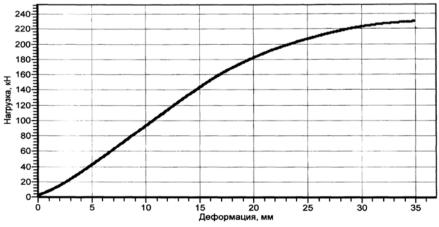


Рис. 4. Диаграмма нагружения анкера АКО1, закрепленного на ампулы АМК ДК через 30 мин. с момента установки

из шпура, до трех литров в минуту, в условиях ОАО «Ургалуголь» и ОАО «Приморскуголь» ШУ «Восточное». После установки анкерной крепи на минеральные ампулы АМК ДК водоприток из шпура прекратился. Проведенные испытания показали пригодность и работоспособность ампул АМК ДК для крепления анкеров в условиях обильного водопритока из шпура.

ВЫВОДЫ

По результатам лабораторных и шахтных испытаний закрепления различных типов анкеров ампулы АМК ДК обеспечили:

- надежное закрепление анкерной крепи;
- эффективность крепления выработок в условиях обводненных пород;
- удобство использования при креплении горных выработок.

Все это делает ампулы АМК ДК достойной альтернативой полимерным при наличии преимуществ по ряду показателей

Список литературы

1. Проект приказа Ростехнадзора «Об утверждении Федеральных норм и правил в области промышленной безопасности «Инструкция по расчету и применению анкер-

ной крепи на угольных шахтах Российской Федерации» // http://www. gosnadzor. ru/public/discussion/acts/anker/

- 2. Рамачандран В., Фельдман Р., Бодуэн Дж. Наука о бетоне: Физико-химическое бетоноведение/Пер. с англ. Т. И. Розенберг, Ю. Б. Ратиновой, Под ред. В. Б. Ратинова. М.: Стройиздат, 1986. 278 с.
- 3. *Касторных Л.И.* Добавки в бетоны и строительные растворы; Учебно-справочное пособие; 2-е изд. Ростовна-Дону: Феникс, 2007 221 с.
- 4. Рамачандран В. С., Фельдман Р.Ф., Коллепарди М. и др. Добавки в бетон: Справ. Пособие/; Под ред. В. С. Рамачандрана; Пер. с англ. Т. И. Розенберг и С. А. Болдырева; Под ред. А. С Болдырева и В.Б. Ратинова. М.: Стройиздат, 1988. 575 с.
- 5. *Брыков А. С.* Гидратация портландцемента: учебное пособие. СПб.: СПбГТИ (ТУ), 2008. 30 с.
- 6. *Брыков А. С.* Силикатные растворы и их применение: учебное пособие. СПб.:СПбГТИ (ТУ), 2009. 54 с.
- 7. *Магдыч В. И.* Крепление горных выработок угольных шахт сталеминеральной анкерной крепью / В.И. Магдыч, О.А. Утиралов; Под ред. Докт. Техн. Наук, проф. В.В. Сенкуса. Новосибирск: Наука, 2007. 148 с.
- 8. Еременко В. А., Разумов Е. А., Заятдинов Д. Ф. Современные технологии анкерного крепления // ГИАБ. 2012. №12. С. 38-45.

Впервые в России на территории Кузбасса проведен международный семинар-практикум

«Современные технологии крепления горных выработок»

Группа компаний «РАНК», в состав которой входят ООО «РАНК 2», ООО «АМК», ООО «АМК ШСУ», в течение 10 лет является признанным лидером

10 лет является признанным лидером в России по разработке и внедрению современных и безопасных технологий крепления горных выработок с при— по л

менением двухуровневой анкерной крепи. Накоплен большой практический опыт по успешному внедрению девяти новых технологических схем, обеспечивающих безопасность ведения горных работ и снижение затрат на поддержание горных выработок.

С 28 мая по 3 июня 2014 г. в г. Кемерово компанией ООО «РАНК 2» был проведен первый международный семинарпрактикум «Современные технологии крепления горных выработок».

В работе семинара-практикума приняли участие специалисты шахт Кузбасса, Ростовской области, Республик Коми, Саха и Казахстана. К сожалению, из-за военных действий на Украине не смогли приехать в Кузбасс специалисты шахт ДТЭК и «Метинвест».

В программе семинара-практикума были представлены теоретические и практические материалы:

- по геомеханике и геофизике;
- по собственным наработкам Группы компаний «РАНК»;
- по новым нормативным докумен-

там, регламентирующим крепление горных выработок;

— по лабораторным испытаниям анкерной крепи и закрепляющих материалов.

Участники семинара посетили шахту, на которой успешно применяются современные технологии двухуровневого анкерного крепления горных выработок.

В рамках работы семинара на «круглых столах» обсуждались и находились решения текущих задач по креплению и поддержанию выработок на шахтах, где работают приехавшие на семинар специалисты.

Это мероприятие было приурочено к международной выставке «Уголь России и Майнинг», и по окончании семинара-практикума его участники 3 июня также посетили и выставку.

По единодушному мнению участников семинара-практикума «Современные технологии крепления горных выработок», такие мероприятия необходимо проводить периодически, не реже одного раза в год.